MATEENBAR™ FIBERGLAS™ REBAR STRAIGHT BAR

Owens Corning® MATEENBAR™ Fiberglas™ Rebar Straight Bar is designed as a structural, corrosion resistant, lightweight, electromagnetically neutral internal reinforcement solution for concrete.

- Makes concrete structures durable in aggressive environments.
- Provides longer service life compared with structures reinforced with steel.
- Complies with ASTM D7957 and CSA S807 material standards for Solid Round Fiberglass Rebar Bars for Concrete Reinforcement.

Product Benefits

<table>
<thead>
<tr>
<th>Extended Service Life of Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATEENBAR™ Fiberglas™ Rebar is a proven corrosion resistant reinforcement designed to provide structures with longer service life compared with structures reinforced with steel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increased Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four times lighter than steel, MATEENBAR™ Fiberglas™ Rebar can be installed faster with less labor.*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exceptional Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength of MATEENBAR™ Fiberglas™ Rebar is twice the yield strength of steel.*</td>
</tr>
</tbody>
</table>

* Based on sample testing of #5 rebar, fiberglass rebar exhibits linear-elastic behavior up to ultimate tensile strength.

Applications

MATEENBAR™ Fiberglas™ Rebar is designed to reinforce concrete in:

Transportation Structures
- Bridge decks
- Traffic barriers
- Civil roadways
- Soft-eye for tunnels

Marine
- Seawalls
- Piles

Buildings
- Balconies
- Wall panels
- Foundations

High Voltage & Electromagnetic Fields
- Light & heavy rail
- MRI rooms

Availability

MATEENBAR™ Fiberglas™ Rebar Straight Bars are available in North America in the following diameters: #2 (M6), #3 (M10), #4 (M13), #5 (M16), #6 (M19), #7 (M22), #8 (M25), and #10 (M32). Stock lengths of 20’ and 40’ are available. Bars of greater length — up to 80’, and other diameters are available on request. Bars can be cut to length for orders with detailed bar lists.
Packaging, Shipping, and Labeling

Straight bars will be shipped to the project site in bundles. Bundle sizes vary by bar length and diameter. Bundle weights usually range from 1,500 lbs to 3,000 lbs. Lead time is subject to plant production schedules at the time of order processing. Customer-specific packaging requirements may be available upon request.

Material traceability markings per ASTM D7957 or CSA S807 will be present on straight bars.

Storage and Handling

Product should be covered or stored away from direct sunlight. Follow guidelines in ACI440.5-08, “Specification for Construction with Fiber-Reinforced Polymer Reinforcing Bars.” In general, field handling and placement is the same as epoxy coated or galvanized steel bars. However, do not shear fiberglass bars. Field cut fiberglass bars using a fine blade saw, grinder, and carborundum or diamond blade. Sealing the ends of fiberglass bars is not necessary. Place support chairs at two-thirds the spacing of support chairs for steel rebar. Plastic-coated tie wires are the preferred option for most projects. Use plastic or nylon zip ties when required for electromagnetically neutral reinforcing. In precast applications, secure fiberglass bars to the formwork to avoid float during compaction.

Safety

When using and handling MATEENBAR™ Fiberglas™ Rebar, proper personal protective equipment (PPE) is required. MATEENBAR™ Fiberglas™ Rebar Straight Bar has a machined helical surface that may be abrasive to skin without proper PPE. Proper PPE includes canvas gloves and shirts with sleeves, long work pants, and sturdy work shoes or boots.

Fiber mass content

Primary materials: E-CR glass and vinyl ester resin.
Bond strength exceeds ASTM D7957 requirement. Bond-dependant Coefficient $K_b (1/C_b) = 0.95$.

* Provided in production lot QC certifications
** Product characterization tests; not included in production lot QC certifications
Field forming of Large Radius Curves: It is possible to field form the bar into large radius curves. This induces a bending stress in the bar, which must be lower/smaller than the creep rupture limit/allowable stresses.

We reserve the right to make improvements in the product and/or process which may result in benefits or changes to some physical-mechanical characteristics.

Straight Bars Technical Characteristics

(ASTM D7957, CSA S807)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>NOMINAL DIAMETER*</th>
<th>NOMINAL CROSS SECTIONAL AREA*</th>
<th>UNIT WEIGHT/LENGTH</th>
<th>GUARANTEED ULTIMATE TENSILE FORCE*</th>
<th>GUARANTEED ULTIMATE TENSILE STRENGTH*</th>
<th>MEAN ULTIMATE TENSILE STRAIN*</th>
<th>MEAN TENSILE MODULUS OF ELASTICITY*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>mm</td>
<td>in²</td>
<td>lbs/ft</td>
<td>kip/kN</td>
<td>ksi/MPa</td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>10</td>
<td>0.11</td>
<td>0.12</td>
<td>185</td>
<td>16.0/71</td>
<td>145/1003</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>13</td>
<td>0.20</td>
<td>0.21</td>
<td>315</td>
<td>27.9/124</td>
<td>140/962</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>16</td>
<td>0.31</td>
<td>0.32</td>
<td>476</td>
<td>41.8/186</td>
<td>135/930</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>19</td>
<td>0.44</td>
<td>0.47</td>
<td>702</td>
<td>57.3/255</td>
<td>130/898</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>25</td>
<td>0.79</td>
<td>0.84</td>
<td>1252</td>
<td>101.9/453</td>
<td>129/889</td>
</tr>
</tbody>
</table>

FIBER MASS CONTENT*

<table>
<thead>
<tr>
<th>NOMINAL DIAMETER*</th>
<th>NOMINAL CROSS SECTIONAL AREA*</th>
<th>UNIT WEIGHT/LENGTH</th>
<th>GUARANTEED ULTIMATE TENSILE FORCE*</th>
<th>GUARANTEED ULTIMATE TENSILE STRENGTH*</th>
<th>MEAN ULTIMATE TENSILE STRAIN*</th>
<th>MEAN TENSILE MODULUS OF ELASTICITY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAR SIZE</td>
<td>in</td>
<td>mm</td>
<td>in²</td>
<td>lbs/ft</td>
<td>kip/kN</td>
<td>ksi/MPa</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>10</td>
<td>0.11</td>
<td>0.12</td>
<td>185</td>
<td>16.0/71</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>13</td>
<td>0.20</td>
<td>0.21</td>
<td>315</td>
<td>27.9/124</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>16</td>
<td>0.31</td>
<td>0.32</td>
<td>476</td>
<td>41.8/186</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>19</td>
<td>0.44</td>
<td>0.47</td>
<td>702</td>
<td>57.3/255</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>25</td>
<td>0.79</td>
<td>0.84</td>
<td>1252</td>
<td>101.9/453</td>
</tr>
</tbody>
</table>

Field forming of Large Radius Curves: It is possible to field form the bar into large radius curves. This induces a bending stress in the bar, which must be lower/smaller than the creep rupture limit/allowable stresses.

Primary materials: E-CR glass and vinyl ester resin.
Bond strength exceeds ASTM D7957 requirement. Bond-dependant Coefficient $K_b (1/C_b) = 0.95$.

* Provided in production lot QC certifications
** Product characterization tests; not included in production lot QC certifications

We reserve the right to modify this document without prior notice.

Primary materials: E-CR glass and vinyl ester resin.
Bond strength exceeds ASTM D7957 requirement. Bond-dependant Coefficient $K_b (1/C_b) = 0.95$.

* Provided in production lot QC certifications
** Product characterization tests; not included in production lot QC certifications

Field forming of Large Radius Curves: It is possible to field form the bar into large radius curves. This induces a bending stress in the bar, which must be lower/smaller than the creep rupture limit/allowable stresses.

We reserve the right to make improvements in the product and/or process which may result in benefits or changes to some physical-mechanical characteristics.

Straight bars will be shipped to the project site in bundles. Bundle sizes vary by bar length and diameter. Bundle weights usually range from 1,500 lbs to 3,000 lbs. Lead time is subject to plant production schedules at the time of order processing. Customer-specific packaging requirements may be available upon request. Material traceability markings per ASTM D7957 or CSA S807 will be present on straight bars.

Product should be covered or stored away from direct sunlight. Follow guidelines in ACI440.5-08, “Specification for Construction with Fiber-Reinforced Polymer Reinforcing Bars.” In general, field handling and placement is the same as epoxy coated or galvanized steel bars. However, do not shear fiberglass bars. Field cut fiberglass bars using a fine blade saw, grinder, and carborundum or diamond blade. Sealing the ends of fiberglass bars is not necessary. Place support chairs at two-thirds the spacing of support chairs for steel rebar. Plastic-coated tie wires are the preferred option for most projects. Use plastic or nylon zip ties when required for electromagnetically neutral reinforcing. In precast applications, secure fiberglass bars to the formwork to avoid float during compaction.

When using and handling MATEENBAR™ Fiberglas™ Rebar, proper personal protective equipment (PPE) is required. MATEENBAR™ Fiberglas™ Rebar Straight Bar has a machined helical surface that may be abrasive to skin without proper PPE. Proper PPE includes canvas gloves and shirts with sleeves, long work pants, and sturdy work shoes or boots.

Owens Corning Infrastructure Solutions, LLC.
One Owens Corning Parkway
Toledo, Ohio, USA 43659
Ph: 1-855-OC-Rebar

https://www.owenscorning.com/rebar

This information and data contained herein is offered solely as a guide in the selection of product. We believe this information to be reliable, but do not guarantee its applicability to the user’s process or assume any responsibility or liability arising out of its use or performance. The user agrees to be responsible for thoroughly testing any application of the product to determine its suitability. Because of numerous factors affecting results, we make no warranty of any kind, express or implied, including those of merchantability and fitness for a particular purpose. Statements in this publication shall not be construed as representations or warranties or as inducements to infringe any patent or violate any law, safety code or insurance regulation. We reserve the right to modify this document without prior notice.
