Introducing Owens Corning’s new and improved solution for concrete reinforcement: MATEENBAR™ Fiberglas™ Rebar. This product is a significant improvement over our previous generation of product, Aslan 100 Fiberglass Rebar, and complies with ASTM D7957 and CSA S807 material standards.

Product Comparison

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>MATEENBAR™ FIBERGLAS™ REBAR</th>
<th>ASLAN™ 100 FIBERGLASS REBAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN TENSILE MODULUS OF ELASTICITY</td>
<td>8.7 Msi (60.3 GPa)</td>
<td>7.5 Msi (51.7 GPa)</td>
</tr>
<tr>
<td>GUARANTEED TENSILE STRENGTH</td>
<td>129 ksi to 145 ksi (889 MPa to 1003 MPa)</td>
<td>102 ksi to 116 ksi (700 MPa to 800 MPa)</td>
</tr>
<tr>
<td>STRAIN</td>
<td>1.5% to 1.7%</td>
<td>1.4% to 1.5%</td>
</tr>
<tr>
<td>GLASS FIBERS</td>
<td>Owens Corning Advantex®</td>
<td></td>
</tr>
<tr>
<td>FIBER MASS CONTENT</td>
<td>≥ 80%</td>
<td></td>
</tr>
<tr>
<td>BOND-DEPENDENT COEFFICIENT $K_b (1/C_b)$</td>
<td>0.95</td>
<td>1.2</td>
</tr>
<tr>
<td>MOISTURE ABSORPTION IN 24 H AT 50°C [122°F]</td>
<td>≤ 0.1%</td>
<td></td>
</tr>
<tr>
<td>RESIN</td>
<td>Vinyl ester</td>
<td></td>
</tr>
<tr>
<td>SURFACE TREATMENT FOR BONDING MECHANISM WITH CONCRETE</td>
<td>Helical machined surface</td>
<td>Helical deformed surface</td>
</tr>
<tr>
<td>COLOR</td>
<td>Greenish-Gray</td>
<td>Gray-Black</td>
</tr>
<tr>
<td>MATERIAL STANDARD COMPLIANCE</td>
<td>ASTM D7957 and CSA S807</td>
<td></td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>Available in sizes #2 to #10 in lengths up to 80’</td>
<td>Available in sizes #2 to #8’</td>
</tr>
</tbody>
</table>

1 Varies by diameter; refer respective product data sheet
2 Refer MATEENBAR™ FIBERGLAS™ REBAR Bent Bar Detailing Guide
What Our Experts Say

The tensile modulus of elasticity has been significantly improved on straight and bent bars. For straight bars, the Mean Tensile Modulus of Elasticity has been increased from 6.5msi (45 GPa) to 8.7msi (60 GPa) and for bent bars, the Mean Tensile Modulus of Elasticity has been increased from 6.5msi (45 GPa) to 7.5msi (51 GPa). MATEENBAR™ Fiberglas™ Rebar straight and bent bars already comply with ASTM D7957 and will comply with the future version of the same standard. Increased tensile modulus of elasticity now means less fiberglass rebar (also known as FRP, GFRP or composite rebar) will be needed than before in some applications like bridge decks leading to significant savings in material and workforce productivity.

MATEENBAR™ Fiberglas™ Rebar straight bars have a helical machined surface which is more uniform and enhances bond performance with concrete. MATEENBAR™ Fiberglas™ Rebar straight and bent bars demonstrate excellent bond performance and durability in accelerated aging durability testing. A complete suite of characterization testing data from independent labs is available. Production lot certifications are readily available and traceable to bars via bar markings or bundle tags.

With MATEENBAR™ Fiberglas™ Rebar, owners and contractors are assured efficient and reliable supply from different facilities to keep projects on time and within budget.

Several large projects (references available) across North America have already successfully used MATEENBAR™ Fiberglas™ Rebar.

Product Benefits

Extended Service Life of Structures
- MATEENBAR™ Fiberglas™ Rebar is a proven corrosion resistant reinforcement designed to provide structures with longer service life compared with structures reinforced with steel.

Increased Productivity
- Four times lighter than steel, Owens Corning® MATEENBAR™ Fiberglas™ Rebar can be installed faster with less labor.*

Exceptional Strength
- Ultimate tensile strength of MATEENBAR™ Fiberglas™ Rebar is twice the yield strength of steel.*

* Based on sample testing of #5 rebar, Fiberglass rebar exhibits linear-elastic behavior up to ultimate tensile strength.

Applications

Owens Corning® MATEENBAR™ Fiberglas™ Rebar is designed to reinforce concrete in:

- **Transportation Structures**
 - Bridge decks
 - Traffic barriers
 - Civil roadways
 - Soft-eye for tunnels

- **Marine**
 - Seawalls
 - Piles

- **Buildings**
 - Balconies
 - Wall panels
 - Foundations

- **High Voltage & Electromagnetic Fields**
 - Light & heavy rail
 - MRI rooms